On the Simultaneous Effect of Prompt Penetration Electric Field and Associated Hemispheric Asymmetry in Low Latitude Ionosphere

Sunanda Suresh1,2, N. Dashora1 and K. Niranjan2

1. National Atmospheric Research Laboratory, Gadanki, India
2. Department of Physics, Andhra University, Visakhapatnam, India

Correspondence E-mail: ndashora@narl.gov.in

International Beacon Satellite Symposium -2019
University of Warmia and Mazury
19-23 August 2019
Olsztyn, Poland

22 August 2019
Puzzling Issues
Main Phase of Geomagnetic Storms
Response of Equatorial and Low latitudes

- Structures of sudden enhancements/depressions in daytime low latitude TEC during main phase (MP) of geomagnetic storms have remained unpredictable.

- In a particular season, in the presence of a background meridional wind, how does plasma redistribute in the EIA region?
- Is it symmetric in both the hemispheres?

- What is the definitive role of perturbation electric field during daytime?
- Response to suddenly Switching polarity of penetration electric field after a stable configuration?
Instantaneous: The electric field (IEF-Ey) of interplanetary origin can instantaneously penetrate from high latitudes to the dip equator known as prompt penetration electric field (PPEF).

Delayed: Effects of perturbation winds in terms of disturbance dynamo and composition changes reach after more than 8-10 hours to days. Also TADs/TIDs arrive with a definite delay.

Aim of this study

Resolve the specific tasks of finding the **Daytime**

1. **Structure** of the equatorial and low latitude **TEC** under Impact of dominant **PPEF**
2. Resulting **hemispheric asymmetry** during the main phase
Simultaneous long term observations across the dip equator from the South American sector from Years 2000 to 2018

1. ACE Observations: IMF Bz and IEF Ey
2. SYM-H and ASYM-H indices
3. Vertical ExB drift from Jicamarca ISR and JULIA - DAYTIME
4. ANN model to derive ExB drift using Delta-H.
5. Delta-H from magnetometers at Jicamarca and Piura/Kourou
6. Observation of GPS – TEC (15-20 sites)
7. Global Ionospheric Maps - VTEC
Artificial Neural Network model for daytime Vertical ExB Drift

Please visit my Poster for details

- Multilayer Perceptron Feed Forward Fully Connected Neural Network with a sigmoid activation function.

- 1070 Days of ΔH (from LISN)
- ΔH between January 2001 to December 2003 from Jicamarca (11.92°S, 76.87°W) and Piura (5.18°S, 80.64°W).

- JULIA vertical ExB drift data of 405 day during 2001 and 2003 used for training
- Validation using ISR Drift

14101 training samples

Training: 150-km JULIA Drifts Validation: ISR Drift
ΔH
• Leveled and quality checked
• Duration = JULIA observations

Validation of model ExB drift on a storm day of 17 April 2002
Min RMSE = 2.3 m/s of ExB drift
Finally an Exhaustive list of all storms is made
Criteria = min. Dst ≤ -100 nT between 2000 and 2018

Selection is narrowed down for
1. Daytime occurrence of sudden southward turning of IMF-Bz at the beginning of MP
2. Simultaneous availability of all data sets

All constraints allowed us to analyze TOTAL 37 geomagnetic storms including
7 major storms (min Dst ≤ -200 nT) +
30 moderate storms (-100 nT ≥ min. Dst ≥ -200 nT)
1. 20 November 2003

Min Dst -500 nT
Max 75 m/s

- Sudden simultaneous peaks at ~12 UT
- Sharp fall at ~14 UT
- Peak at 17 UT

Asymmetry of ~40 TECU with northern hemisphere more perturbed than southern hemisphere
Episodic fluctuations between 12-13 UT, 15-16 UT, 17-18 UT and then between 19-20 UT

Simultaneous sharp peaks at 13 UT 15-16 UT and 19-20 UT.

Inter hemispheric asymmetry of ~20 TECU where southern hemisphere is more perturbed

Maximum VTEC at different times
St. Patrick’s Day storm of 17 March 2015

- IMF Bz short lived southward excursions at ~1130 UT and 1230 UT
- Continuously southward from 14 UT till 00 UT
- 3 peaks in observed VTEC at around 12, 14 and 17-18 UT simultaneous
- Large unusual enhancements between 17-19 UT in the afternoon sector
- Unusual presence of crests of EIA between local evening and midnight sector during 23-5 UT
- Hemispheric asymmetry of different scales at different times
Episodic fluctuations in IMF-Bz and IEF-Ey reflected in ΔH and vertical ExB drift with peaks at 14.5, 15.5, 18.5 and 19.5 UT and falls at 15, 17, 19 and 20.5 UT.

- **GIM-VTEC** shows large enhancement on both sides of dip equator.
- Peak VTEC over the crests of EIA of ~78 TECU and 68 TECU simultaneously occur at 21 UT.
5. 24 August 2005

IMF-Bz southward between 9-11 UT
sharp northward after 11 UT
southward between 11.5 UT-13 UT
prolonged northward fluctuations till 17 UT

maximum VTEC up to 70 TECU in southern hemisphere and less than 60 TECU over northern hemisphere

sharp peaks simultaneously in VTEC between 11-13 UT, 16 -17 UT, 18-19 UT, 20-21 UT and 3 UT
Episodic variations in IMF B_z and IEF E_y at 12 UT, between 13-14 UT, 15-16 UT, 17 UT and 18-19 UT

Corresponding peaks and fall in ExB drift

Hemispheric asymmetry is found to exist in terms of excess 10 TECU in southern hemispheric
IMF Bz shows fluctuations from 11 UT and turns southward at ~15 UT with further episodic reversal.
- ExB drifts rise from ~9 m/s to ~28 m/s and then fall back to 5 m/s in a course of 2 hours.
- Simultaneous peaks and depressions in VTEC Asymmetry of ~15 TECU between 18-21 UT biased towards northern hemisphere.
Conclusions: My bit of contribution to resolve the puzzle

✓ Sudden polarity reversals of PPEF from eastward to westward and vise-versa directly reflect as **sharp upward to downward** variation in the equatorial vertical ExB drift.

✓ This causes the formation of **sudden peaks and valleys in VTEC simultaneously** over a range of low latitudes.

✓ This study, for the first time, establishes the **dominant and independent control of PPEF** on day time low latitude VTEC during main phase.

✓ With switching polarity of PPEF, simultaneous rise and fall of TEC is observed in tandem with fluctuations in ExB drift, but with different intensities in either hemispheres.

✓ **Inter hemispheric asymmetry** is found to exist regardless of season.
Sincere thanks to the organizers for the Prof. P. V. S. Rama Rao award

Thank you for your kind attention