MULTI-CONSTELLATION GNSS TOMOGRAPHY FOR ACCURATE IONOSPHERIC IMAGING

J. Bruno, C. N. Mitchell, K. Bolmgren

Centre for Space, Atmospheric and Oceanic Science,
University of Bath, UK

This work is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 722023.
Motivation: Why use multi GNSS?

• Number of satellites in view is a limiting factor for the spatial resolution of your image.

• Combining multiple constellations will increase the number of satellites.

• Goal: to demonstrate the improvement from GPS-only to GPS+GLONASS+Galileo tomography.
Ionospheric tomography

• Total Electron Content (TEC) measurements as line-integral data.

• By inversion, 3 or 4 dimensional ionospheric maps are obtained.

• Data coverage is essential.

MIDAS

Multi Instrument Data Analysis Software: Software suite that uses available GNSS data to image the ionosphere.

Simulation
Simulation method

- 60 simulated receivers. Emulated STEC measurements obtained by integrating satellite-to-receiver paths through known ionosphere (IRI).
- Measurements used as input in MIDAS. 3-D electron density images are obtained.
- Vertical TEC from the reconstructed images are compared to the vertical TEC from the known ionosphere (IRI).

- Different resolutions and number of constellations.
- **Aim**: Test if the addition of GLONASS and Galileo brings any improvement to images in terms of:
 - Accuracy
 - Resolution.
Real observations
Multi GNSS measurement coverage

- 20 + 7 multi GNSS receivers, all of them tracking the 3 constellations.
- Observations from 1-5 January 2019.
- More measurements available, why not use them?
Multi GNSS tomography: Experiment

- MIDAS electron density videos with:
 - GPS-only/Multi constellation in a **low resolution** grid (4 by 4 degrees resolution)
 - GPS-only/Multi constellation in a **high resolution** grid (0.5 by 0.5 degree resolution)
- Vertical TEC and Slant TEC are analysed.
Multi GNSS tomography: VTEC Results

2019 1 1 16:20:00

GPS-only

Low res.

Multi-GNSS

High res.
Multi GNSS tomography: STEC Results

- 7 receivers left out of the inversion process and used as validation.
- Daily DCBs were calculated from MIDAS, and applied to calibrate the STEC measurements of these receivers.
- Calibrated TEC were compared to STEC integrated through the reconstructed images.
Conclusions

• **Multi-GNSS integration** for ionospheric tomography has been demonstrated.

• **Multi constellation tomography can significantly improve** the accuracy of high-resolution electron density images compared to GPS-only tomography.
Future work

• Case-study with denser receiver network.
• Image MSTID in the ionosphere.
• Add more constellations (e.g. BeiDou).