Tomographic imaging and modelling of a LSTID during geomagnetic storm conditions

Karl Bolmgren, Cathryn Mitchell, Jon Bruno
University of Bath, UK

Gary Bust
Johns Hopkins University Applied Physics Laboratory, USA

This work was supported by Marie Skłodowska-Curie Actions grant agreement No. 722023
Introduction

• The extensive coverage of GNSS receiver networks provide an ideal tool to image LSTIDs over large areas.

• The aim of this presentation is to demonstrate large area imaging of a TID using GNSS Tomography
Background

- **Tomography:**
 - Produces 2D-4D images of ionospheric electron density
 - Tomography from LEO to ground UHF-VHF signals successfully image TIDs in 2D
 - Some previous studies using various GNSS tomography methods to image TIDs in 3D-4D*
 - MIDAS has not previously been used to investigate TIDs.

- **Large scale TIDs:**
 - LSTIDs common during geomagnetic storm conditions
 - One of the largest storms in recent history occurred on **29-31 Oct 2003**. We are focussing on the third day of the storm

GPS receivers from IGS & UNAVCO
Waves in TEC on 31 Oct 2003 from an individual receiver.
By visual inspection: Azimuth ≈ 15° (S-W), $\lambda_h \approx 700$ km, $T \approx 30$ min, $\Rightarrow V_{ph} \approx 390$ m/s, $V_g \approx 320$ m/s
Verification

- LSTID has been identified from TEC measurements
- However, previous studies [Wan & al 1997, Penney & Jackson-Booth (2015)] warn of distortion in the apparent TID due to satellite movement
- Can the full process be replicated by end-to-end modelling and simulation?
 - In order to do this, we need to simulate a realistic TID

Modelled TID

- W. H. Hooke’s [1968] physical model representing TID
- IRI 2016 representing “background” electron density

D. Bilitza et al. (2017), International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather, 15, 418–429
Verification by simulation

Actual N_e

Actual sTEC

MIDAS

Reconstructed N_e

Model N_e

Line integration

Emulated sTEC

MIDAS

Reconstructed N_e

Hooke + IRI

compare
Comparing simulation result with model

(2 h running average subtracted to isolate the foreground)

We can reproduce the TID, but there are effects from sparse receiver coverage
Verification by simulation

- Actual N_e
- Actual TEC
- MIDAS
- Reconstructed N_e

- Emulated TEC
- MIDAS
- Reconstructed N_e

- Model N_e
- Line integration
- Hooke + IRI

compare
Comparing simulation result with real result

(2 h running average subtracted to isolate the foreground)
Comparing simulation result with real result

(2 h running average subtracted to isolate the foreground)

If a real TID with these parameters (Azimuth ≈ 15°, λh ≈ 700 km, T ≈ 30 min, Vph ≈ 390 m/s, Vg ≈ 320 m/s) were in an otherwise undisturbed ionosphere, it would have resulted in the left movie. The movie from the real data is showed on the right.
Summary

• Tomographic reconstruction of LSTID from actual GPS TEC

• This was a previously unreported LSTID from the 2003 Halloween storm

• An end-to-end simulation demonstrated that the tomographic imaging process was able to reproduce the actual TID without distorting the parameters
Future work

• A more realistic “background” electron density model can improve validation

• Further analyse the TID in context of the storm

• Use multi-GNSS and denser networks to improve image resolution in order to image smaller TIDs